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Summary

The evolution of unsteady boundary layers in the vicinity of the leading edge

of a thin oscillating airfoil has been examined with a novel numerical method

which is able to deal with the movement of the stagnation point and with reg-

ions of reverse and separated flow. Solutions to the unsteady boundary-layer

equations, with a prescribed pressure distribution which causes flow reversal

and separation, demonstrate the importance of numerical steps in distance and

time and that a requirement similar to the stability criterion of Courant,

Friedrichs and Lewy must be satisfied to avoid numerical errors. At the lower

reduced frequencies of the investigation, solutions could not be obtained with

this procedure and it was necessary to introduce interaction between the vis-

cous and inviscid flows. The solutions obtained with the interactive method

were increasingly different from those without interaction as the reduced fre-

quency was decreased towards zero and, for some combinations of Reynolds number

and frequency, exhibited behavior consistent with the instability of separation

bubbles.
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1.0 INTRODUCTION

The lift and drag characteristics of airfoils at moderate Reynolds numbers can

be affected by separation bubbles which occur close to the leading edge and,

at high angles of attack, can increase in size to cause stall. The added com-

plexity of unsteady motion such as that associated with the rotor blades of

helicopters implies that the flow characteristics are influenced by amplitude

and frequency and that, in particular, the stall characteristics can be consid-

erably modified. The investigations of Carr, McAlister and McCroskey (1977),

Francis, Keese and Retelle (1983), Daley and Jumper (1984) and Lorber and

Covert (1986) examined these effects over limited ranges of the parameters and

that of Carr et al. (1977) provides detailed information of the mechanism of

dynamic stall of an oscillating airfoil. It appears that stall is associated

with flow reversals in the unsteady boundary layer and that these may translate

downstream or upstream depending upon various parameters including the radius

of the leading edge of the airfoil. At some stage in the cycle, stall occurs

and is preceded by a vortex which forms close to the surface and is probably

associated with a breakdown of the unsteady boundary layer.

The above physical problems involve laminar, transitional and turbulent flow

and their representation requires a numerical calculation procedure which can

provide accurate solutions to conservation equations in all regions of flow as

well appropriate transition and turbulence models. Here we are concerned with

the numerical solution procedure, its development to represent the regions of

reverse flow and use to examine the nature of solutions for parameters close

to those associated with stall. The emphasis is on regions of flow close to

the leading edge of a thin oscillating airfoil and calculations are performed

with prescribed pressure gradient and with interaction between solutions of the

viscous and inviscid equations. With the configuration chosen, an analytical

solution for the potential flow equations was available.

Previous consideration of steady boundary layers and their solution by an

interactive procedure, has been reported by Cebeci, Stewartson and Williams

(1981) for a model problem consisting of a thin ellipse at incidence. Their

study showed that the solutions were well behaved and unseparated provided the

angle of attack was less than 1.155 degrees. At higher angles, separation

occurred with an associated singularity which was overcome by the use of the

6343H 1



interactive procedure and results were obtained for small regions of separated

flow. There is, however, a limiting size of separation bubble beyond which

Cebeci, et al. (1981) could not obtain solutions and this may be related to the

physical phenomenon of open separation and stall. A similar result was

obtained by Stewartson, Smith and Kaups (1982) who used a triple-deck approach

and found that their calculations of separation bubbles could break down with

a small increment in pressure gradient. They also observed that their solu-

tions were not unique and their results may imply that large separation bubbles

cannot exist in laminar flows at high Reynolds numbers.

The unsteady-flow calculations reported here were obtained with Keller's box

method (1974) for the solution of the boundary-layer equations. In regions of

flow reversal, a requirement similar to the stability criterion of Courant,

Friedrichs and Lewy (CFL), see Isaacson and Keller (1966), is satisfied by the

use of the characteristic box procedure discussed by Keller (1978) and Cebeci

(1986) and the interactive procedure is based on the Hilbert-integral previ-

ously used by Cebeci et al. (1981). This combination of methods represents the

best possible approach available to the authors and allows the importance of

the stability criterion to be examined as well as the structure of the solu-

tions. of necessity, a limited number of parameters is considered but encom-

passes a range of relevance to oscillating airfoils.

The flow configuration under consideration, equations, initial and boundary

conditions are examined in the following section which is followed by a brief

description of the solution procedure. The results are presented and discussed

in Section 4 and the paper ends with a summary of the more important

conclusions.

6343H 2



2.0 FLOW CONFIGURATION, CONSERVATION EQUATIONS,

INITIAL AND BOUNDARY CONDITIONS

We consider flow over an ellipse with a thickness ratio T( b/a) much less than

unity at an angle of attack a. The body surface is defined by

x = -a cos6, y = aT sin8 -w < <

and the corresponding external velocity for steady flow can be deduced from

inviscid flow theory to be

u0 (s,t) 0(1)
e 

2

Here u 0(s,t) denotes a dimensionless velocity, ue/U (1 + T), the parameter
ee cc

denotes a dimensionless distance from the nose related to the x- and

y-coordinates of the ellipse by x = 1/2 aT 2, y = aT2 t, and 0 (-/T)

Vrepresents a dimensionless angle of attack. The parameter is related to

the surface distance s by

ar2  + 2)1/2dE

0

The boundary-layer equations for unsteady incompressible laminar flows on

oscillating airfoils are well known and can be written as

au av

as an u

au au 2a u + U l -+ v L = e u e  + -- 3
at as an at e s- n 2.'r an 2

Solutions to these equations are usually obtained for prescribed boundary

conditions given by

n = 0. u = v =0; n , u u (st) (4)

and we shall refer to this as the standard problem. In the interactive problem

. we determine u (st) partly from inviscid theory and partly from the pressure
6
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distribution resulting from the blowing velocity d/ds (u e6*) induced by the
boundary layer. Thus we write

u (s,t) = u0 (s't) + u (S't) (5)

where u0 (st) is the inviscid velocity and uc (s,t) is related to the
e

blowing velocity by a variation of the Hilbert integral

Wu St 114 U6)da (6)

cCSIt I eds s

which is valid for straight walls but can be generalized to airfoils as dis-

cussed by Cebeci and Clark (1984). The freestream velocity, consistent with

Eq. (1) has the form

- + E (I + A sinwt

u°(s't) 0 (7)e / 1 + E 2

where A is an amplitude parameter and w is a dimensional frequency.

For attached flows, the effect of uc (s,t) is generally weak but is enhanced

in the neighborhood of separation as can be surmised by noting that the inte-

grand in Eq. (6) would otherwise develop a strong singularity at separation and

cause the solutions to break down further downstream. As discussed by Cebeci,

et al. (1981), it is sufficient to replace Eq. (6) by

i S b (u 
6)'

Uc(S't) I - do (8)
sa

where the prime denotes differentiation with respect to s and s and sba b
denote the beginning and the end of the interaction region.

To complete the formulation of the problem, upstream boundary conditions must

be specified in the (tn) plane at some s - s as well as initial conditions
0

in the plane (s,n) at t = 0. If steady-flow conditions prevail at t = 0, the

initial conditions can be obtained easily for both surfaces by solving the

conservation equations for steady flow which, in this case, are given by Eq.

(2) and by

6343H 4



du a2uV i '. + U e  
+ v AL (9)

as an eds an 2

There is no problem with the initial conditions for Eqs. (2) and (9) since the

calculations start at the stagnation point where they admit similarity

solutions.

The generation of the upstream boundary conditions for Eqs. (5) and (6)

requires a special numerical procedure. Since the complete velocity profile

distribution on a previous time line is known, solutions can be determined on

the next time line by an explicit method. If we wish to avoid stability prob-

lems, however, an implicit method is required and generation of a starting

profile on the new time line becomes a problem.

In order to explain the problem further, it is instructive to see what happens

to the stagnation point as a function of time. For this purpose let us con-
0

sider Eq. (7). Since ue = 0 at the stagnation point, its location, s based
on the external streamlines is given by

s= -0 (1 + A sinwt) (10)

Figure 1 shows the variation of the stagnation point with time for one cycle

according to Eq. (10) with A = 1, w = v/4. We see that when t = 2, the

stagnation point s is at -2 0, and when t = 6, it is at 0, etc. If s

were fixed, we could assume that u = 0 at - for all time and all n but
0

this is not the case. It is also possible to assume that the stagnation point

is coincident with zero u-velocity for a prescribed time but we should note

that the stagnation point defined by Eq. (10) is based on the vanishing of the

external velocity. For a time-dependent flow, this does not imply that the

* u-velocity must be zero across the layer at a given E-location and specified

time; indeed flow reversals can occur due to the movement of the locus of zero

u-velocity across the layer and can cause numerical instabilities which require

the use of special numerical schemes as discussed by Cebeci and Carr (1981).

6343H 5
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3.0 SOLUTION PROCEDURE

With the upstream boundary conditions determined by the procedure of Cebeci and

Carr (1981) and with the initial conditions obtained from the solution of Eqs.

(2) and (9) subject to the boundary conditions given by Eqs. (4) to (6), Eqs.

(2) and (3) can be solved for both standard or inverse problems. In practice

a standard procedure is used up to a specified i-location after which the

calculations may proceed by either standard or inverse procedures. For exam-

ple, the evolution of the boundary layer on an oscillating airfoil with pre-

scribed pressure distribution is determined with the standard procedure and the

inverse procedure is used after a short distance from the leading-edge region

where the inviscid and viscous flow equations are solved interactively.

To solve the equations for both standard and inverse problems we use modified

forms of Keller's box scheme. The Mechul function formulation of Cebeci (1976)

is used in the inverse case and treats the external velocity as an unknown.

Before we describe this formulation and the solution procedure, it is conveni-

-" ent to write Eqs. (2) to (4) in a form more suitable for computation. To

achieve this we define dimensionless distances n and s and time T by,

R(l + t ) 1/2 u (1 + tI )=  n - s t (lla)
2t at 1 at1

with R = 2au /v, and a dimensionless stream function f by
m2

,(s,n,t) = [(I + t1)au .Vt2 1 1 2 f'' (lib)

These relations may be introduced into Eqs. (2) and (3) to give, with primes

denote differentiation with respect to n,

aw 3w af' + f' af
f3' + - + w - + f' - f" - (12)as as as

where

u
e u

u (I + t1) -u (I + t1 )

The boundary conditions follow from Eqs. (4) to (6) and can be written as

- T = 0, f =f' =0,

(13)

* 6343H 6



, sb-0 bdA dcr
NI "1 = ie' f' = ww = u s _ d d

ee- s ds s- aa

Here A denotes a dimensionless displacement thickness given by

t(s,T) = ne - fe (14)

and c is a parameter defined by

1 2 1/2 (15)
It1 R(l + tI)

To pave the way for the description of the numerical method, we define a new

variable

S= af (16)as

and write Eq. (12) as

aw aw af' af'
f" + f' + + w s + f' as(17

where the overbar has been omitted. We use Keller's box method (1974) to solve

this equation. In regions of no flow reversal the so-called standard box

method is used and where there is flow reversal, this is replaced by the char-

acteristic scheme which is based on the solution of Eq. (17) along streamlines

as described by Keller (1978) and Cebeci (1986). This scheme allows the step

sizes in the T and s-directions to be automatically adjusted to ensure that

the region of backflow determined by the local streamlines does not violate a

condition like the Courant, Frledrichs and Lewy (CFL) stability criterion.

Although the zig-zag scheme of Krause et al. (1968) can also be used for this

purpose, it can be inaccurate in regions of large flow reversal since the ori-

entation of numerical mesh is chosen a priori, as discussed by Cebeci (1986)

and later in this paper.

To solve Eqs. (17) and (14) with the box scheme and the Mechul function formu-

lation, we let

V = e (18)

6343H 7
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and introduce a new function g defined by

el = g (19a)

and with w(x) treated as unknown

W' = 0 (19b)

and write Eqs. (1.6) and (17) and their boundary conditions as

ae

aw aw, ae a
g+ go+-+w- -+e-(1dat as aT as(1d

0- . f e =0;
(20)

- b
Tle . =u +o dA do

ee w e~ Ts S -0

~ To write the difference equations for the system given by Eqs. (19) and (20),

we consider a net cube in which the net points are denoted by

s 01,S i-I + £ i =1,2,.. I

0 0. n n-1 k nn =1, 2. .. ,N (21)

no a0, n jl+h ,2

wherer, As,k n= AT nand hi =Ain.

The difference approximations to represent Eqs. (19a) and (19b) are obtained by

averaging about the midpoint (s., T nt1 -12)

h;1I (e Ifl - e i,n) . gi~f (22a)
j i-1 J-1/2

h- (W n - w i ) .0 (22b)

6343H 8
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where, for example,

ilfn 1 i~n i~n.(3
e =-l/ (e1J +6 e )l (

J-1/2 2 j -1

The finite difference approximations to Eqs. (19c) and (19d) are obtained by

centering all quantities except 8 at the center of the cube (s 1/2' Tn-1 /2 ,

n J-/2) by taking the values of each say q, at the four corners of the box, that is,

i-l/2,n 1 (=n 21 )n q i,n + i-l.n (24a)J-/2J-1/2 + qJ-1/2 )  4 1 + qJ-1 qJ-1 2a

The centering of 9 is done by writing it as

i-1/2,n-1/2 1 0i-1/2,n -1/2,n-1/2)
J-1/2 - j + j-1~2

In this notation, the difference approximations to Eqs. (19c) and (19d) can be

written in the form:

h( -(0 9 l  = ri (eI - ei_1) (25a)

h ( g- + - + kn (wn -w1 )+ rI (w -1/2(wI -w

kn(e n en-I + r I[e J-1/2(ei ei-1 gJ-1/2 (fi - f 1 1 )] (25b)

where, for example,

- i-1/2,n-l/2 - i-1/2,n e e i,n-l/2 i-1/2,n-1/2e1 
= j ,e n  e61i/2 , e e6i/ , = 0'j (26)

i~ e -/ -1/2 1 1

Following the procedure of Cebeci, et al. (1981) the boundary condition involv-

ing the Hilbert integral in Eq. (20) can be written in the formiinn )= n

iin c (n W Ln fn i n (27)
w - cii - = w -

where c is the matrix of interaction coefficients defining the relationship

*between the dimensionless displacement thickness and external flow and the

parameter Tj represents terms where values are assumed to be known. It

is given by

in in i- m,n mn
Tj (u) + m CimfJ +c J Cimn (28)

3 6 -I m-i+l

lo 6343H 9



To compute the additional unknown of Eq. (27). we write Eq. (18) in the form

h 1 (f - f _Lz ejL/2 (29)

so that the system consisting of Eqs. (22). (25), and (29) can be solved

subject to the boundary conditions given by Eq. (27) and which follow from Eq.

(20).

f =8 =e 0; e =w (30)

The above system can be linearized by Newton's method and the resulting linear

system solved by the block elimination procedure described in Cebeci and

Bradshaw (1984) for both standard and inverse formulations. In the former

0
case, it is sufficient to set c = 0 in Eq. (27) so that w is equal to u e

We follow the above solution procedure when there is no flow reversal across

the layer. If separation is identified from the values of u n  we use

the characteristic scheme which has recently been described by Cebeci (1986)

in relation to the standard problem of computing the impulsively started lam-

" . inar flow over a circular cylinder. The solution procedure in this case is

similar with small adjustments due to the manner in which the difference equa-

tions are adjusted to the modified form of Eq. (19d). Noting the definition

of local streamlines, we write

d _ ds (31)
e

If we denote distance in this direction by q and the angle that it makes with

the r-axis by a. then Eq. (19d) can be written as

g. + go + X - (32)

where

+ e (33a)

-1
a =tan •1 (33b)

a a.
=w (33c)

The finite-difference approximations to Eq. (32) are written along the stream-

Line direction (see Fig. 2) at

6343H 10
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~L (i~ ;i.n) * (gm~fll - u.n-I
2 1 -1  2 1 +

1.n m,n--

+ I (g i-n + g a,*: -v k 1,n + L , n-) e 1-1/- *1-1/2
2 J1 /2  J-1/2 J-1/2 2 J-1/2 1-1/2 J12(4AqJ-1/2(34)

where

AqJ1 /2 - kn/cose J-1/ 2  (35)

The relation between P-1/2 and those values of 9 centered at (i-1/2,n-1/2)

and (1-3/2.n-1/2) are

_1-3/2 - 1-1/2
P -1-1/2 1-1/2 (sp + ^i-3/2 (36)
J-1/2 5 1-3/2 _ s1-1/2 -3/2) J1-1/2

The solution of Eq. (12) subject to the boundary conditions given by Eq. (13)

is achieved by solving the system of equations given by Eqs. (18), (19) and

(20) (standard scheme) when there is no flow reversal. When calculated results

reveal flow reversal (e < 0). further iterations at that location make use

of the characteristic scheme which seeks the solution of Sqs. (18), (19a,bc)

and (32) for e < 0 and the regular scheme for e > 0. This switch from

one scheme to another continues to allow quadratic convergence and ensures that

numerical instabilities are avoided provided that the step lengths in the r-

and s-directions are *properly' selected as we shall discuss in the following

sect ion.

,1
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4.0 THE QUESTION OF SINGULARITY ON AN OSCILLATING AIRFOIL

The problem of a circular cylinder Impulsively started from rest has served as

a model problem with which to examine unsteady boundary layers and the nature

of their solutions in the presence of large flow reversal. Noteworthy contri-

butions have been made by Cebeci (1979), van Dommelen and Sher (1982). Cowley

(1983) and Ingham (1984). and show that at large times the distribution of

displacement thickness has a steep rise near the location of zero wall shear

and with consequent tendency for calculations to break down. The suggested

values for the time and location of zero wall shear and peaking of the dis-

placement velocity, [d/ds(u 6*)] vary slightly, probably due to differencese
in the calculation methods. The explanation for the breakdown of the calcula-

tions has been provided by Cebeci (1986) who demonstrated that numerical calc-

ulations must satisfy a CFL-like stability criterion. If this is done, it is

expected that the location of the singularity associated with unsteady flow and

large time will correspond exactly to that of steady flow, namely 9 - 1050,

rather than 9 - 1110. The same situation cannot be expected with oscillating

airfoils where the solutions are cyclic and do not tend to a steady state.

The present study examines the nature of solutions to the boundary-layer equa-

tions for the flow on an oscillating airfoil, which can give rise to extensive

regions of flow reversal and separation. Here flow reversal implies the exist-

ence of negative wall shear and separation is taken to correspond to situations

where calculations with a prescribed pressure distribution breakdown due to a

singularity. The calculations were made for three values of w with to = 1 and

A -1/2. With the choice of w = 0.001, 0.01 and 0.10, the maximum value of

off' defined by

t eff= 0(1 + A sinwt)

is sufficient to provoke separation with a strong singularity. For example,

_ the maximum value of keff is 1.5 at-wt - 270 and the flow conditions

closely resemble a steady separated flow at the smaller frequencies w = 0.001

and 0.01. Since the value of teff corresponding to steady flow separation

is 1.115, we would expect the calculations to break down before wt = 2700 due

to the singularity. For the higher frequency case (w = 0.10), we expect the

solutions to break down later than wt - 270* with flow reversals occurring in

the range 270* < wt < 360*.

6343H 12



The calculations were arranged to parallel those previously performed for a

circular cylinder and reported by Cebeci (1986). Thus both the ziq-zag and

the characteristic box schemes were used first with time and distance steps

which were chosen arbitrarily and subsequently with values in agreement with

the stability criterion. The results of Fig. 3 for w - 0.10 were obtained

with the zig-zaq box scheme by Cebeci. Khattab and Schiuke (1984) for a At

spacing specified such that AEt - 0.01 up to E - 1.7. At, a 0.005 for 1.7

< E < 4 and At, - 0.01 for 4 < E < 8; the time steps k were 10 degrees

degrees for 0 < wt < 260, 5 degrees for 260 < wt < 295, and 1.25 degrees

for 295 < wt < 360. The calculations broke down at wt - 310*. indicating

flow separation at this location.

Fig. 3a shows that the variation of the displacement thickness

6 (1+ 1 ) L- (2S)

is generally smooth except in the neighborhood of E - 2.12 and for wt =

308.75'. The first sign of irregularity is the steepening of the slope of

4t6P when wt - 3000 and a local maximal of 6' occurs at E - 2.12 when

wt a 308.750. When the same results are plotted for a displacement velocity,

(d/d)(u eP), (Fig. 3b), we observe that the steepening of the displacement

velocity as the peak moves form E - 2.125 to 2.08 with wt changing from 300

to 308.75 degrees. It should be noted that the maxim value of displacement

velocity moves towards the separation point with increasing wt and the same

behavior will be shown to occur for the circular cylinder discussed below. As

shown in Fig. 3c, the wall shear parameter f" shows no signs of irrequ-
w

larity for wt < 308.75* but a deep mintmim in f; occurs near = 2.15,

i.e. near the peak of 4'.

S It is interesting and useful to compare the results presented in Fig. 3 for an

oscillating airfoil with those obtained by Cebeci (1982) for a circular cylin-

der started impulsively from rest, Fig. 4. and obtained with the same zig-zag

scheme. As in the case of the oscillating airfoil, the flow separates and

remains smooth up to the separation point. However, Just downstream of sepa-

ration with increasing time, a singularity seems to develop in the neighborhood

of 9 - 112' and t = 3.0 and it was not possible to continue the boundary-

layer calculations beyond this time and angular location. From Fig. 4a we see

that the variation of displacement thickness is smooth for values of 0 less
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than 108" and it begins to steepen thereafter. The same results are plotted

in Fig. 4b to demonstrate that the displacement velocity exhibits a maximum

which increases rapidly with time, as in Fig. 3b, with the maximum shifting

towards the location of separation with increasing time. The results of locaL

skin-friction coefficients. Fig. 4c, follow similar trends to those obtained

for the oscillating airfoil with the distributions passing through zero with

no signs of irregularity and no breakdown before the time corresponding to the

singularity.

The calculations which led to Fig. 3 were repeated with the characteristic box

scheme using the same coarse variations of kn and AEi and the results

were identical to those obtained with the zig-zag scheme up to wt - 280. At

wt - 282.5, the solutions of the zig-zag scheme were smooth and free of wig-

gles but those of the characteristic box scheme exhibited oscillations in

f which led to their breakdown. The solutions with the zig-zag scheme,w

however, continued without numerical difficulties until wt - 310, where

oscillations appeared and led to the breakdown of the solutions at the next

time step.S
The characteristic box was used subsequently with values of Ati fixed as

before and with values of k determined in accord with the stability require-n
ment as shown in Table I. This procedure avoided the breakdown of the solu-

tions and, as can be seen from Fig. 5, the maximum value of 0 increases con-

siderably with wt so that the solutions required correspondingly smaller

values of the time step. It is Interesting to note that the wall-shear distri-

butions of Fig. 6 are uninfluenced by the mesh at wt - 280 and 310 but, for

wt > 310, the coarse mesh leads to large values of 0 and breakdown of the

, solutions.

Figure 7a shows the distributions of displacement thickness for values of wt

from 260" up to 360" and completes the cycle. The results up to 300' were

identical with those of Fig. 3a with rapid increase of the displacement thick-

'ness corresponding to the increasing extent of flow reversal, as shown by the

wall-shear distributions of Fig. 7b. It can also be seen from this figure that

the maximum displacement thickness and minimum wall shear move upstream with

' ,. increasing wt for values of wt up to 324.5'; this feature was also observed

*. in the calculations performed for the circular cylinder and shown in Fig. 4.
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Table 1. The distribution of step sizes in wt for wt - 0.1 in accordance

with the requirements of the stability parameter 8

Wt kn

0 - 240 100

240 - 255 50

255 - 261 3*

261 - 265 2*

265 - 284 10

284 - 305 0.5*

305 - 320 0.250

320 - 360 0.50

The results obtained with the zig-zag scheme and values of k determined byn
the characteristic scheme for the oscillating airfoil were identical to those

discussed above, and similar correspondence was obtained with the calculations

performed for the circular cylinder.

Figures 8 and 9 show the distributions of wall shear and displacement thickness

for two smaller frequencies w - 0.01 and 0.001. As expected, the critical

value of the reduced angle which corresponds to separation, is smaller than

that for the higher frequency and closer to that of the steady state, E -

1.16. For w - 0.01, the breakdown of the solutions occurs at wt - 2260,

which corresponds to an effective reduced angle of Eeff n 1.360; for w - 0.001.

the corresponding values are wt = 204* and 1.203. We also note from Figures 8a

and 6b that the flow is a Olittle" unsteady even at these frequencies, and the

solutions do not break down with the appearance of flow reversal, which

increases in extent as w changes from 0.001 and 0.01.
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5.0 INTERACTION AS AN ANSWER TO THE QUESTION OF SINGULARITY

The interaction procedure discussed in Section 3 has been applied to the flow

problem examined previously in Section 4 with the standard method and the

results are shown in Figures 10 to 14 and discussed below. In contrast to the

standard problem, which makes the implicit assumption of infinite Reynolds

number, the interaction requires specification of a finite Reynolds number. A

thickness ratio T has also to be specified and, since the definition of c

involves R and T, the calculations are performed for specitied values of C.

In all cases shown, the calculations made use of time steps determined by the

characteristic scheme in agreement with the stability requirement. This was

not done in the calculations of Cebeci et al. (1984) and the solutions exhib-

ited oscillations which stemmed from the numerical method.

The present calculations were performed in the following way. For all values

of time with wt ranging from 0 to 3600, the standard method and the leading-

edge region procedure of Cebeci and Carr (1981) were used to generate initial

conditions at a short distance from the leading edge, - 0.5. With these

initial conditions and for each value of wt, the inverse method was used to

calculate the unsteady flow from E = 0.5 to 10, for the specified value of

c. Since the system of equations is now elliptic, sweeps in the k-direc-

tion were necessary to achieve a converged solution; around three sweeps were

required where flow reversal was encountered and a single sweep sufficed where

it did not. It is to be expected that the value of c will influence the

number of sweeps and, since it is linked to physical parameters, will affect

the singularity and the size of the bubble.

4
Figures 10 and 11 show the results for w = 0.001 and 0.01 with c = 10 . They

are nearly the same as those obtained by the standard method and shown in Fig-

ures 8 and 9 prior to flow reversal where the influence of the Reynolds number

is small and increase after flow reversal. In the case of w = 0.001, for

example, the standard method predicts flow reversal around teff = 1.19 (see

Fig. 9) and with interaction (Fig. 10) this effective angle is between 1.219

and 1.254. The maximum negative value of the wall-shear parameter f obtainedw
with the standard method is around -0.03 at = 1.199 and may be compared

eff: with the maximum value of fw of -0.14 at eff = 1.286 obtained with inter-

action. As expected, the interaction allows the calculations to be performed
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at higher angles of attack than those achieved with the standard method. For

w = 0.001, the maximumaeff for which calculations can be performed with

the standard method is 1.199 with breakdown occurring at Eeff = 1.209; the

corresponding values with interaction are 1.286 and 1.287. Comparison of wall-

shear results with both procedures and w = 0.001 indicates that the extent

of the recirculation region At is around 0.5 for the standard case, and

around 2.5 for the interactive case. The solutions do not have a singularity

in the former case but do contain flow reversals and this suggests that time-

dependent flows can be calculated without using an inverse procedure. As the

angle of attack exceeds teff = 1.199 for w = 0.001, a singularity devel-

ops and requires an inverse procedure as in two-dimensional steady flows. This

procedure allows the calculation of larger regions of reverse flow where the

flow is now separated.

We see a similar picture with the greater unsteadiness corresponding to w =

0.01, for which the standard method allows calculations up to an effective

angle of attack of 1.354 (Fig. 8a), a value considerably higher than 1.199

obtained at w = 0.001. The first flow reversal occurs shortly after teff =

1.294 and breakdown occurs at Eeff = 1.360 with maximum negative wall shear

values of -0.14 at teff - 1.354 and -0.035 at Eeff = 1.315. The extent of

the maximum reverse-flow region is now 1.5, considerably larger than for w =

0.001, and indicates that the more unsteady nature of the flow produces a big-

ger region of reverse flow free from singularities. For this value of w, the

interactive scheme increases the value of teff for which solutions can be

obtained to 1.424 with breakdown occurring shortly after this value at 1.428

(see Fig. 11). The first flow reversal occurs after teff = 1.315 with

maximum negative wall shear equal to -0.19 at teff = 1.424, and the extent of

the recirculation region has now increased by about 30%. Comparison of maxi-
U

mum wall shear values, fw, at a similar value of teff indicates that

those computed with the interactive scheme are lower than those with the stand-
U

ard scheme so that, for example, the interactive scheme gives (f") = - 0.04
w max

at Eeff = 1.36 compared to -0.14 at-ieff = 1.354 with the standard method
(Fig. 8a).

Figure 12 shows that the size of the reverse-flow region increases with

Reynolds number but the effective angle of attack for which solutions can be

obtained is only slightly reduced, changing from 1.428 for c = 104 to
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around 1.415 for v = 10 5. It is interesting to note that the interactive
4

solutions do not have any flow reversal at eff 2 1.315 with c = 104.

Figures 13 and 14 show the results for w = 0.1 with values of 
c of 104

5
and 10 and they are again similar to those obtained by the standard method,

as shown in Figure 7, prior to flow reversal where the influence of Reynolds

number is small. After flow reversal, the differences between the results

obtained with the standard and interactive methods increase as the Reynolds

number decreases. It is clear that the solutions are free from the numerical

"wiggles" encountered when the stability criterion was not met.

Comparison of results obtained at the two Reynolds numbers for w = 0.1 indi-

cates that the interaction does not reduce the maximum negative value of the
U

wall shear parameter as it did with lower frequencies. For example, f
w

at wt = 360* is around -0.19 with the standard scheme and around -0.30 at

c = 104 and around -0.35 at c = 105 with the interactive method. The

maximum value of negative wall shear calculated with interaction is consider-

ably greater than its corresponding value obtained with the standard method at

the end of one complete cycle. Furthermore, the behavior of the wall shear is

not monotonic without interaction so that, for example, f reaches a max-
wimum value equal to -0.25 around wt = 3310 and then decreases to -0.195 at

wt = 360*. With interaction this is not the case with the maximum negative

value of f continuously increasing with wt.w

The results of Figures 7, 13 and 14 for w = 0.1 are for an unsteady flow and

are unlike those for two other values of w in that they are free from singu-

larities. For this reason, even though the results in the reverse flow region

and thereafter are different due to the Reynolds number effect, the extent of

the reverse-flow region is essentially the same and is consistent with the

results obtained at lower frequencies in the absence of flow separation even

though the extent of the reverse-flow region is reduced at the lower Reynolds

numbers.

The results obtained with w = 0.001 can usefully be compared with the steady-

state results of Cebeci et al. (1981) shown in Figure 15. We might expect that

.Jp ~ the small unsteadiness associated with this frequency will lead to results very

similar to those of steady state. Inspection of Figures 10 and 15 shows that
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although this is correct in general terms, the answers are quantitatively dif-

ferent. As can be seen, the maximum effective angle at which solutions can be

obtained is greater in the unsteady case by some 7%. There are differences in

the two calculation procedures but it is unlikely that they are responsible for

this difference. On the other hand, it is possible that the difference in the

negative wall shear values may have been influenced by the use of the FLARE

approximation in the steady-state solutions. Nevertheless, the unsteady nature

of the flow with w = 0.001 is clear, in spite of this very low reduced

frequency.

Jtk
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6.0 CONCLUDING REMARKS

The following principle conclusions may be drawn from the preceding text.

1. A calculation method has been developed to represent flows around oscil-

lating airfoils. It is based on a similar approach used for steady flows

with separation and involves interaction between inviscid and viscous-flow

equations. The coupling technique is similar to that described by Veldman

(1981) and Cebeci et al. (1981) for steady flows. This interactive method

has been used to calculate separation and reattachment near the leading

edge of a thin oscillating airfoil and has been shown to give rise to rapid

convergence similar to that obtained in steady flows, Cebeci et al. (1986).

2. The accuracy of the results obtained from the solution of the boundary-

layer equations has been examined with emphasis on regions of flow reversal

and separation where the characteristic box scheme is used. Attempts to

improve accuracy by ad hoc changes to the finite-difference mesh failed and

revealed the need for a procedure which would automatically guarantee

accuracy by the selection of an appropriate mesh. This was achieved

through a stability criterion, similar to that of Courant, Friedrichs and

Lewy. The combination of this requirement and the characteristic box

scheme led to accurate solutions and showed that the mesh requirements

were extremely severe in the region of large flow reversals.

3. Calculations have been performed for a range of reduced frequencies from 0

to 0.1. They show that increased unsteadiness allows results to be

obtained at higher angles of attack before the solutions break down; indeed

in the case of the highest frequency there was no breakdown. The calcula-

tions with the standard method led to regions of flow reversal which were

limited in their extent by the singularity except at the highest frequency.

The interactive procedure removed this singularity and resulted in larger

regions of flow reversal which involved separation at higher angles of

attack.

The calculated maximum angles of attack were, however, modest and regions

of separated flow were small. This is consistent with the behavior of

steady laminar flows which can only sustain small separation bubbles.
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The unsteady nature of the flow at the highest frequency allowed the calc-

N ulation of large regions of flow reversal and it is expected that yet

higher frequencies will lead to even larger regions of flow reversal. This

in turn will permit calculations to be performed at larger angles of attack

where the occurrence of the singularity will require the use of the inter-

active procedure. The gains in angles of attack are again likely to be

limited by the ability of the laminar flow to sustain separation bubbles.

3%

4. The interactive scheme, incorporating the solution of the boundary-layer

equations by the characteristic box scheme and with the numerical mesh

determined in accordance with the stability criterion, has been used to

calculate the laminar flow for a model problem. The numerical aspects of

this procedure have been thoroughly tested and shown to be general so that

it can be used for the solution of laminar and turbulent flows over air-

foils of practical relevance.

.3
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